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Phase transitions in coupled map lattices and in associated probabilistic cellular automata
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Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic
cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with
attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions
is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated
explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling
sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical
exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting
probabilistic cellular automaton for the critical behavior is pointed out.
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I. INTRODUCTION

Nonlinear and chaotic behavior in dynamical systems
with a small or finite number of degrees of freedom is nowa-
days a very well-established topic [1,2]. Features of chaotic
dynamics can be observed in diverse real world experiments
[3] and can be captured by quite abstract mathematical mod-
els even quantitatively [4], owing to universal properties and
structural stability. The situation is less complete when the
dynamics of systems with a large number of degrees of free-
dom is at stake when not close to thermodynamic equilib-
rium. Of course, over the past decades there has been made
substantial progress in particular fields such as, e.g., non-
equilibrium pattern formation where well-established ap-
proaches are available in the literature [5]. In addition, para-
digmatic model systems have been developed as well, e.g.,
for the dynamics of interacting oscillators in random envi-
ronments [6]. But there is still no comprehensive picture
when interacting chaotic subunits are considered. Models of
coupled maps which have been proposed decades ago and
which have been investigated extensively by numerical
means [7,8] have turned out to be extremely difficult to treat
in a rigorous manner [9-12]. Furthermore, the relation be-
tween coupled map lattices and real experimental phenom-
ena is not obvious. But such a shortcoming also appears
when low-dimensional chaotic behavior is studied in terms
of maps. On the other hand, coupled map lattices are a quite
promising class of dynamical systems since mathematical
tools such as symbolic dynamics link coupled map lattices
with the statistical mechanics of spin systems [2,13]. De-
pending on the implementation one either ends up with an
equilibrium spin model where the Hamiltonian typically has
quite intricate interactions [9,10] or with a dynamical spin
model where the time evolution requires simultaneous up-
dates of the lattice sites [14]. The latter class of systems,
usually called probabilistic cellular automata, is quite well
established in mathematical statistical physics [15,16]. Last,
but not least, numerical simulations of coupled map lattices
show phase transition like behavior in the limit of a large
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system size [17,18]. Thus, despite that there is no direct link
to experimental phenomena, coupled map lattices are inter-
esting in their own right as they constitute a quite rich model
class for nonequilibrium statistical physics.

Here we will recall the relation between certain types of
simple piecewise linear coupled map lattices and the corre-
sponding description in terms of the statistical mechanics of
spin models. As already pointed out it has been suggested
that qualitative changes of the dynamics of coupled map lat-
tices in the limit of a large system size can be understood in
terms of equilibrium phase transitions in spin models [9],
although it is quite subtle to give the notion of a phase tran-
sition in dynamical systems a proper meaning [19]. Here,
however, we skip these subtleties and we illustrate such a
concept with quite simple piecewise linear map lattices only.
Actually, it will be shown in Sec. III that dynamical systems
with attracting and repelling invariant sets may behave sub-
stantially different with respect to the occurrence of phase
transitions since the first type of dynamical systems yields
severe constraints for the resulting spin Hamiltonian. Thus,
while spatially one-dimensional expanding coupled map lat-
tices with repelling invariant sets display Ising phase transi-
tions [20] such transitions are less likely to occur in one-
dimensional dynamical systems with chaotic attractors. In
fact, a similar feature is quite well known in the context of
probabilistic cellular automata [15,16]. Phase transitions
which occur in spatially one-dimensional coupled map lat-
tices with absorbing states (cf. [21], and references theirin)
seem to be somehow suppressed for expanding coupled map
lattices. Therefore, we focus in Sec. IV on a spatially two-
dimensional model. Within such a setup numerical simula-
tions indicated that Ising-like phase transitions may occur
[17]. But careful analysis of the numerical data showed
slight deviations from the Ising universality class [22]. Such
deviations have been attributed to the temporal evolution in
coupled map lattices which require a simultaneous update of
lattice sites, in contrast to standard algorithms for simulating
the statistical mechanics of equilibrium spin models which
rely on some version of random or sequential updates
[23,24]. We are going to introduce a piecewise linear spa-
tially two-dimensional coupled map lattice which shares the
essential features of the Miller-Huse model but which can be
dealt with analytically by the methods introduced previously.
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FIG. 1. Piecewise linear symmetric expanding Markov map
(solid line). The derivative of the map on the cylinder set U, is
denoted by v,, o,7e{-1,1}. Explicit time-dependent modulations
of the map are indicated in gray [cf. Eq. (1)].

Actually, we will point out that detailed balance of the cor-
responding probabilistic cellular automaton may play a cru-
cial role for the critical behavior. Several critical exponents
will be determined by finite size scaling methods in Sec. V.

Some considerations of the subsequent sections are quite
well established in the literature, in particular, the basic re-
marks of Sec. II and the considerations contained in the ap-
pendices. But to keep our presentation self-contained and
accessible for a nonspecialized audience the concepts will be
introduced from scratch in an elementary way. As a byprod-
uct we are able to introduce the necessary notation.

II. PRELIMINARY REMARKS ON SYMBOLIC DYNAMICS

To begin with we first recall some very basic facts about
piecewise linear Markov maps [2] and of the construction of
coupled map lattices which can be solved analytically
through symbolic dynamics. For the purpose of illustration
consider the one-dimensional map x,,,=f(x,) defined on
[-1,1] which is depicted in Fig. 1. Although our consider-
ations will work for asymmetric cases as well we will restrict
our considerations mainly to inversion symmetric maps. The
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The spatial coupling is mediated by the symbolic coordinate

0',(1"”) only. Thus Eq. (1) has much in common with a skew

product structure. Such a special type of coupling enables us

1) if
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map admits two invertible branches f, on [-1,0] and [0,1],
respectively. The corresponding preimages of the domain,
U,=f,'[-1,1], 0 e {~1,1}, yield a generating partition since
we are considering expanding maps, i.e., maps with slopes

larger than one. For any fixed symbol sequence
(09,01,04,...,) the so-called cylinder sets Ugy...c,= 0(1)

° j;i---Of;i)[—l,l] yield a sequence of nested intervals.

Since the length of these intervals decrease exponentially
due to the expansiveness of the map, |f’(x)|>1, such a se-
quence finally singles out a phase space point Xop0p - where
by construction the itinerary of this point is determined by
the infinite symbol sequence. In order to ensure for simple
statistical properties of the dynamics we will assume that the
map acts linear on the cylinder sets of the second generation,
i.e., on Ug,o,» and we denote the modulus of the slope by
Yoo, Thus, the whole dynamics is mapped to a symbol shift
of infinite symbol sequences (o, 0,05, ...,). Actually, the
current map has much in common with the statistical me-
chanics of the nearest neighbor coupled Ising chain [25].

It is worth mentioning that the whole construction of the
symbolic dynamics works in the same way if the map de-
pends explicitly on the time n, as long as it still falls within
the class of piecewise linear Markov maps. Thus, the time-
dependent modulation indicated in Fig. 1 with time-
dependent slopes still allows for the same symbolic descrip-
tion. Such an observation is the main clue to construct a
coupled map lattice based on piecewise linear Markov maps.

The piecewise linear expanding Markov map is the start-
ing point to introduce a spatially one-dimensional coupled
map lattice. Let v, 0<v=<L-1, denote the lattice sites, x
=(x@ xM, .. xED) the actual state of the system, and ¢
=090, ...,0!")) the symbolic state where o
=sgn(x"). As far as the spatial coupling is concerned we
will restrict ourselves to a simple case, i.e. a unidirectional
nearest neighbor coupling. However, the subsequent consid-
eration may be applied to more general situations as well.
Finally, periodic boundary conditions will be imposed.

On each lattice site v a map depicted in Fig. 1 acts on the
coordinate x’(;’). The values of the local slope depend on the
sign of the right nearest neighbor, i.e., on 0',(1”“). Thus the
dynamics is given by

if —1=<xV<-1+1/y_[o\")]
it -1/ [o"=x" <0
it 0<x <1y o]

1-1/y,, e <xV <1

(1)

to provide a full analytical solution, although the usually
considered diffusive coupling is not covered by such a con-
struction.
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FIG. 2. Piecewise linear expanding Markov map with repelling
invariant set. The value of the derivative is indicated by I';,, o, 7
e {-1,1}. Explicit time-dependent modulations of the map are dis-
played in gray. (cf. Fig. 1).

The values of the slopes v,,[ 7] are the parameters of the
coupled map lattice determined by Eq. (1). Since we are
considering a map with an attracting set we have to impose
the constraint

1 N 1 _ 1 . 1 B
y-lol  y.lol - Yilol  vilol -

If we confine for simplicity to the setup of inversion sym-
metric systems the slopes may be expressed in terms of the
symbols o, 7" e {~1,1} by

Yetngo[ 7]
— exp(— )\O_(V)T(V) _ MO.(V)T(V+1> _ aT(V)T(V+1) _ B)’ (3)

where the last two contributions in the exponent take care of
the normalization (2). Thus

1. (2)

1 =2 cosh(\ + wexp(a + B),
1 =2 cosh(\ — w)exp(— a + B) 4)

holds and only two of the four parameters N\, u, «, B can be
chosen independently.

The symbolic dynamics of the coupled map lattice (1) is
constructed in precisely the same way as for the single site
map. Given a semi-infinite symbol lattice (gy,d7,...,) one
obtains through the inverse branches of the map lattice a
sequence of nested L-dimensional cubes which single out a
phase space point Xgya,.... The itinerary of this point when
applying Eq. (1) is given by the symbol lattice.

The restriction imposed by the condition (2) on the slopes
will turn out to be quite severe. We, therefore, recall a second
coupled map lattice without such a constraint [20]. But we
have to pay the price that the invariant set is no longer an
attractor. The type of single site maps are displayed in Fig. 2.
Constructing the cylinder sets through the inverse branches
we clearly obtain the recursive construction of a Cantor set.
Phase space points not contained in this set will leave the
domain on iteration. For the slopes itself we may allow for a
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time-dependent modulation which is caused again by the
symbol of the right nearest neighbor when placing these
maps on a one-dimensional lattice. Thus, the dynamical sys-
tem reads

A = FO o), (5)

n ’>-n

where the analytical expression for the right-hand side is
essentially given by Eq. (1) when replacing y,,[7] by I',,[7].
For the choice of the local slopes I', [ 7] we have more free-
dom since nothing like the normalization (2) has to be ap-
plied. Later on we will adopt the expression

e 7] = exp(= JoW 7 = J79 74D _E) - (6)

with constants J and E,. This particular choice links the sta-
tistical properties of the coupled map lattice (5) with the
two-dimensional Ising model. However, from the topological
point of view there is not much difference between the mod-
els (1) and (5) since the symbolic dynamics is constructed
essentially in the same way.

III. ANALYSIS OF THE PROBABILISTIC CELLULAR
AUTOMATA

Since the models (1) and (5) allow for an explicit con-
struction of the symbolic dynamics and since the simple to-
pological structure nicely complies with the piecewise linear
structure we can write down the time evolution of the prob-
ability distribution quite straightforwardly [14]. Let us first
consider the map lattice (1). If p,(g) denotes the probability
to find the phase space point in hypercube U,, at time n then
the time evolution is governed by a master equation (cf. Ap-
pendix A for details)

Pani(@) = 2 WA@: Dp, (D). (7)
The transition rates W/(g; 1) appearing in Eq. (7) are ob-
tained by comparison with Eq. (A4) to be the Jacobian of the
map lattice (1). Taking Eq. (3) into account we obtain

1
%@@=@;;;qu=wﬁ§me@

+ar A 4 ,8)], (8)

where a local field has been introduced by the abbreviation
H, (1) = A7)+ pr ™). 9)

The different parameters appearing in the transition rate (8)
are related to each other by Eq. (4) since we are considering
a system with an attracting set. The corresponding condition
(2) ensures the normalization

2 Wigin=1 (10)
which guarantees that the probabilities appearing in Eq. (7)
remain normalized. Equation (7) describes transitions be-
tween states of a spin chain ¢ with synchronous updates at
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the individual sites. Such a model is usually called a proba-
bilistic cellular automaton contrary to the widely known ki-
netic Ising models [23] where updates are usually performed
on a random or sequential basis. It is quite well established
that detailed balance in probabilistic cellular automata re-
quires a local field which is symmetric with respect to lattice
sites (cf. e.g., [15,26]). Thus, in view of Eq. (9) detailed
balance is violated. Such a property is, of course, not surpris-
ing as unidirectional coupling gives rise to a trivial transport
mechanism. Because of the lack of detailed balance the com-
putation of the stationary density p«(¢) may already pose a
challenge, not to mention temporal correlations and eigen-
value spectra of the transition matrix. Here we will recall that
the model defined by Egs. (8) and (9) admits a complete
analytical solution (cf. [15] and Appendix B).

The key for the determination of the stationary density is
the normalization (2) which is essentially the reason for the
conservation of probability, Eq. (10). In view of Eq. (3) the
normalization reads

1=2 exp(\a 7 + uo 7 Vexp(ar 7D + g).
e

(11)

Then straightforward computation yields

2 Wila;1)s,(1) =

T T p(#v)
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S Wi T expl- a0 - )= 3 T exphrot”

+ puro ) = 11 exp(- acWaV - B). (12)

Thus, thanks to the nearest neighbor coupling in the local
field (9) the stationary distribution is given by

p«(g) = Eexp( > 0'(”)0'(””)), (13)

where Z is determined by normalization. The stationary dis-
tribution coincides with the canonical distribution of a near-
est neighbor coupled Ising chain although the dynamics of
the probabilistic cellular automaton does not fulfill detailed
balance. Such a feature is also known from kinetic Ising
models which can be derived from the current coupled map
lattice when a perturbation expansion in terms of spin flip
processes is applied [27].

As for the dynamics of the model (7) we will solve the
eigenvalue equation of the transition matrix. For that purpose
let us introduce the abbreviation

s(@) =0"p:(a). (14)
A computation quite similar to Eq. (12) yields

ZE ( H exp()\r(”) (p) 4 ,Uﬂ'(p (p=1) 4 ,B))f(") exp()w(") () +,u,71”) Dy B) = E(H E exp()wip

p 4P

S, 0 27 exp a0 4 VoD 4 )

+ Mqip)a(p—l) + ﬁ))

+s,_1(g)Jtanh(\ + w) + 2[s (o) -

Therefore the function (14) yields an invariant subspace of
the transition matrix with the simple recurrence rule (15).
The corresponding eigenvalue problem can be solved by
Fourier transformation in a straightforward way. We thus ob-
tain for the eigenvalues

tanh(\ + w) + tanh(\ — )
q = 2
tanh(\ + w) — tanh(\ — w)

+exp(iq) : (16)

and for the eigenvectors

r/o) = EGXp(qu)s (o) = 2 Y expligv)p-(a),

(17)

where the values of the wave number are fixed by periodic
boundary condition g=27€/L, 0<{<L-1. The imaginary

> e exp(NT M + w1 )

= p«(o)tanh(\o'” + uo* V) = %[SV(Q-)

s,-1(g)Jtanh(\ — ). (15)

part of the spectrum (16) reflects the transport in the system
induced by the unidirectional coupling. The modulus of the
eigenvalues (16) is smaller than one indicating an exponen-
tial decay of the pair correlation function and an exponential
decay of the transient dynamics. Thus, no phase transition is
expected to occur for our model. A similar reasoning may be
applied to compute the other eigenvalues governing the de-
cay of higher order correlation functions.

Given the Markovian property of the evolution equation
(7) the probability of finding a finite time series of states
(gy,a1,...,0,) is essentially determined by the product of
the transition rates, i.e., by

Wf(gn;gn—l) cee
= exp(E 2 (hohoy” + poih ol
v k

Wf(<71 ;00)

+ CYO'(V)O',((VH + B)) (18)
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FIG. 3. Diagrammatic view of the interactions in the two-
dimensional Ising Hamiltonians Eq. (18) (left) and Eq. (20) (right).

Obviously, such a probability can be cast into the form of a
canonical weight of a two-dimensional Ising lattice
(g9,a1, .- ,a,) with nearest neighbor and diagonal coupling
(cf. Fig. 3). Actually, the transition matrix of the probabilistic
cellular automaton (7) is just the transfer matrix of this two-
dimensional Ising Hamiltonian. Because of the normalization
(4) the coupling coefficients N, u, a cannot be chosen inde-
pendently. As we have just shown such a constraint prevents
a phase transition from taking place in the thermodynamic
limit. Such limitations are quite well established in the con-
text of probabilistic cellular automata [15,16] and the con-
straints are called for historical reasons “disorder condi-
tions.”

The situation is quite different for coupled repeller maps
where the disorder condition can be avoided. Although the
dynamics of the probabilities is again governed by a master
equation with transition probabilities being determined by
the Jacobian of the map lattice

1

Wi(a;n =11 o271

14

(19)

and the probability for finding a symbol
(g9,01,...,0,) is essentially determined by

Wi, 0,m1) ... Wr(ay:ap) = eXP(E > oo
v k

sequence

+ oo + Eo)) (20)

we now obtain by construction the canonical weight of the
nearest neighbor coupled two-dimensional Ising model. In
such a case a phase transition occurs for sufficiently large
coupling strength J which is reflected by the spectral struc-
ture of the corresponding transfer matrix Wg(g; 7) [28]. De-
tails of the analysis of the corresponding coupled map lattice
have been already published recently [20]. While the phase
transition of our first model was prohibited by the constraints
imposed by the attracting set the absence of such a constraint
for the repeller system allows for the occurrence of different
ergodic components in the thermodynamic limit.

IV. ANALYTICAL SOLUTION OF A MILLER-HUSE-TYPE
MAP LATTICE

Phase transitions in spatially one-dimensional probabilis-
tic cellular automata may be inhibited by constraints im-
posed by attracting sets as shown in the previous section. But
such transitions, in particular, Ising-type phase transitions,
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FIG. 4. Single site map of the coupled map lattice defined by
Eq. (21).

occur when repelling states are allowed as well. The phase
transition has been related to spatiotemporal symbolic pat-
terns in order to generate equivalent two-dimensional spin
Hamiltonians with short range interactions. The plain spatial
correlations of such models, e.g., the stationary density of the
probabilistic cellular automaton displays phase transition be-
havior as well. Of course, Inp:(g) yields only a one-
dimensional spin Hamiltonian. But the stationary density
which is just an eigenstate of the transition matrix W(g;7)
contains quite nontrivial long range spin interactions (cf.
e.g., [28] for the eigenvector of the Ising transfer matrix)
reflecting the occurrence of the phase transition. Thus, an
alternative for investigating phase transition behavior of
coupled map lattices and of the corresponding probabilistic
cellular automata consists in the investigation of the station-
ary density. Whenever detailed balance is obeyed and when
the transition rates are local then we suspect that the corre-
sponding stationary density yields a Hamiltonian with short
range interactions only (cf. Appendix B). In such a context
phase transitions can only occur when we study spatially
two-dimensional lattices. In what follows we will recall the
famous Miller-Huse model and its critical behavior in view
of these statements.

More than a decade ago a spatially two-dimensional
coupled map lattice was introduced which mimics to some
extent a two-dimensional Ising model [17]. The single site
map consisted of a kind of antisymmetric tent map (cf. Fig.
4) while for the spatial coupling the usual nearest neighbor
diffusive coupling was employed which is frequently used in
numerical studies of coupled map lattices. Simulations
showed an Ising-like phase transition. Subsequent careful
studies based on finite size scaling indicated that there are
deviations in some critical exponents such that the coupled
map lattice does not belong to the Ising universality class
[22]. The behavior has been suggested to be related with the
simultaneous updating procedure taking place in coupled
map lattices contrary to random or sequential updates ap-
plied in kinetic Ising models.

In order to address this kind of problem in analytical
terms let us introduce a variant of the Miller-Huse model
which can be dealt with in an analytical way. For the single
site map we choose an antisymmetric tent map (cf. Fig. 4).
But for the coupling we resort to a symbolic coupling which
only takes the sign of the coordinates of nearby lattice points
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into account. Thus, we are able to employ the analytical tech-
niques described in the previous sections. To be definite con-
sider a simple square lattice with periodic boundary condi-
tions and let v=(v,,v,) label the lattice sites. As before x

“1+2(1=xN(1=a,) if

xWa,

*a_

[T(x)]" =

PHYSICAL REVIEW E 74, 046209 (2006)

=(x"") and g=(0'") denote the actual and the symbolic state
of the system, respectively, where o'”’=sgn(x"). For the
map acting on the lattice site v we take the form depicted in
Fig. 4

a+<x(”)<1
it 0<x"<a,

21
if —a_<x"<o @1

1-21+x"Y(1-a) if —1<xP<—-qa_

The spatial coupling is introduced by letting the param-
eters a, of the map depend on the sum of the nearest neigh-
bor symbols

v 1, -1, oyt -1
Eg) = gl g gimbn) gt g =) - (22)
For our particular model we choose
a2 = tanh(Jo + J,,0V5Y). (23)

The spatial coupling in the map lattice is thus mediated by
the constant J,, which, in fact, has to obey the constraint
[/, <Jo/4 in order to keep the map lattice (21) well defined.
We will see later on that the particular choice (23) ensures
detailed balance of the corresponding probabilistic cellular
automaton.

There is, of course, no guarantee that the coupled map
lattice just introduced has something in common with the
original Miller-Huse model. However, one has to keep in
mind that the diffusive coupling usually employed in numeri-
cal studies of coupled map lattices has no real justification as
well. The symbolic coupling used here has the advantage of
being accessible by analytical means as one is essentially
dealing with a dynamical system admitting a skew product
structure.

The probabilistic cellular automaton can be easily derived
from Egs. (21) and (23) using the formal approach of Appen-
dix A. In fact, a heuristic inspection of the single site map
indicates that a “spin flip” at lattice site v, o — -, will
occur with probability (l—a(,(w[Eg’)])/ 2. Thus, the rate for
the process 7 — o is given by

1+ U(v)gwaf(y)[z;w] exp[o.(v)(‘lo%v)_'_‘]nnzgv))]
2  2cosh(Jyr” +7,2)

. (24)

where we have used Eq. (23). Thus, we infer the transition
rates of the master equation [cf. Eq. (7)] to be given by the
expression

exp(z ) M (Jor + J,,,,EETV)))
HV 2 cosh(Jy + J,,,,T(”)Eg"))

W(g;1) = (25)

Of course, the same expression is obtained when the piece-
wise linear density is used for evaluating the Frobenius-
Perron equation of the coupled map lattice.

The master equation obeys detailed balance since the ef-
fective field related with the transition probabilities (25) is
symmetric with respect to space inversion. In fact

(v)s (v)
HV2 cosh(Jy + J,,0'"%,)) _po)

W(ro) IT 2 cosh(sy + 4,775 ) p(D)

(26)

and the two-dimensional spin Hamiltonian associated with
the stationary density is given by

—1In p«(g) == > In cosh(J, + J,mU(V)EE;)) —1In(2/2).

(27

The two-dimensional Hamiltonian (27) produces phase tran-
sitions [29]. If, for instance, one considers the limit J,> 1
then, apart from exponentially small corrections, the loga-
rithm and the hyperbolic function in Eq. (27) cancel and we
end up with a nearest neighbor coupled Ising model. A fer-
romagnetic phase transition appears at J,,=J,=In(y2+1)/4
=0.2203, ..., . Thus, spatial correlations of the coupled map
lattice (21) decay exponentially for 0<J,,<J., while the up
down symmetry of large lattices is spontaneously broken for
strong coupling J,,>J... The qualitative behavior can be eas-
ily confirmed by numerical simulations (cf. Fig. 5). Even for
rather small values of J, the prediction of the critical cou-
pling seems to be quite accurate and an Ising-type phase
transition is found when the time evolution of the total mag-
netization mn=EV<T,(1V)/L2 and the state of the symbol lattice
are observed.

There is a quite simple explanation why the invariant den-
sity of the coupled map lattice approaches the canonical dis-
tribution of the two-dimensional Ising model in the limit J,
>1. In this limit the parameter (23) is close to 1 so that
transitions in the sign of the coordinate, i.e., spin flips, hap-
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FIG. 5. Numerical simulation of the coupled map lattices (21)
and (23) for Jy=1.25 on a square lattice of size 200X 200 with
periodic boundary conditions. Time dependence of the magnetiza-
tion mnzﬁva'ny)/ L? (left) and the final state of the symbol lattice at
n=>50000 (right) when a ferromagnetic initial state has been used.
Top, subcritical coupling J,,=0.20; middle, “critical” coupling J,,,
=0.22; bottom, supercritical coupling J,,,=0.24.

pen rarely (cf. Fig. 4). Thus, even in a large lattice there are
almost no simultaneous changes of sign. The symbolic dy-
namics is equivalent to a kinetic Ising model with random
updates, and the canonical distribution of a nearest neighbor
coupled Ising model is obtained for the stationary state.

Of course, one can easily analyze the Hamiltonian deter-
mined by Eq. (27) for smaller values of J, as well using
some standard algebra. To keep the presentation self-
contained Appendix C contains some details. Apart from
nearest neighbor and next nearest neighbor interactions the
Hamiltonian contains as well two types of four spin interac-
tions (cf. [26] for a closely related result). These interactions
are short ranged and mainly ferromagnetic. Thus general
wisdom about renormalization suggests that the model falls
within the Ising universality class. Although an analytical
proof is not obvious such an assertion can be tested easily by
numerical means.

V. FINITE SIZE SCALING ANALYSIS

Critical behavior and the corresponding universality class
can be quantified by various critical exponents. Actually, for
the accurate numerical determination of such exponents one
may resort to procedures very well established in the context
of equilibrium and nonequilibrium physics [24]. Such con-
cepts have been applied to coupled map lattices [22] and
probabilistic cellular automata [30] as well. Three critical
exponents which are quite easy to evaluate are related with
the power law behavior of the magnetization, the suscepti-
bility, and the spatial correlation length, M~ (J,,,—J.)%, x
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FIG. 6. Top: Numerical computation of the Binder cumulant
(28) for the coupled map lattices (21) and (23) with Jy=1.25 and
different system sizes. For each value of the system size L the lines
display a cubic and quartic least square fit to the data points. The
two lines cannot be distinguished at the scale of the graph. Bottom:
Graph of the Binder cumulants on a smaller scale. Cubic and quar-
tic fits to the data points can now be distinguished.

~m=Jd7?, E~|J,,=J.|7", in the thermodynamic limit L
— o, To obtain reliable values for such exponents one has to
resort to a finite size scaling approach [24]. The key quanti-
ties to be computed are moments (m") of the magnetization
m=2,,0'(">/L2 where () denotes an ensemble average, i.e., a
long time average in the case of dynamical systems. By ob-
serving the dependence of such moments on the system size
L and on the coupling strength J,,, one is able to determine
accurate estimates for the critical point J,. and for the critical
exponents B, y, and v.

To begin with one needs an estimate for the critical cou-
pling. Such an estimate can be obtained by computing the
so-called Binder cumulant

(m*)
(m?)?

in dependence on L and J,,. The finite size scaling hypoth-
esis guarantees that the Binder cumulant depends on the two
variables only through the combination (J,,—J.)L"". Thus,
for different values of the system size L the graphs of the
Binder cumulant considered as a function of the coupling
strength J,,, all intersect in a common point which deter-
mines the critical coupling J.. Figure 6 displays data for the
coupled map lattice (21) obtained for various system sizes.
Throughout our simulations we fix the value of the parameter
Jo=1.25. The ensemble averages have been computed from a
time series of length n=10° and in each case 5% of the
simulation time has been discarded to allow for the decay of

UlL,J,,)=-3+ (28)
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12.5 25 50 100
L

FIG. 7. Derivative of the Binder cumulant at the critical cou-
pling strength in dependence of the system size. Data points have
been obtained from the cubic (X) and quartic (O) fit to the data
displayed in Fig. 6. The straight line shows a least square fit.

the transient dynamics. To a very good degree the graphs of
the Binder cumulant intersect at a critical value of the cou-
pling strength. To improve the accuracy of the estimate Fig.
6 shows the behavior on a smaller scale as well. Fits to the
data points yield an intersection region and we produce a
conservative estimate for the critical coupling, J,.
=0.234 13+0.000 03.

To obtain the exponent ¥ one may consider the derivative
of the Binder cumulant with respect to the coupling J,,, at the
critical coupling strength. Actually applying the finite size
scaling hypothesis we have

U ~ L', (29)
aJ nnlJ, =J.

We estimate the derivative by computing the slope of the
cubic and the quartic fit at the critical coupling strength. The
data for the slope in dependence on the system size are
shown in Fig. 7. The order of the fit plays apparently a minor
role. The double logarithmic plot yields a confirmation of the
power law scaling and the least square fit yields for the ex-
ponent the estimate v=0.994+0.015.

The exponent 8 can be determined essentially from the
scaling of the finite size magnetization at the critical cou-
pling strength, J,,=J.. The finite size scaling hypothesis
yields

(Jm|y ~L7P". (30)

The data displayed in Fig. 8 confirm such a power law be-
havior with an exponent B/v=0.1245+0.0005. The third ex-
ponent can be obtained from the scaling of the finite size
susceptibility at the critical point

x=L2((m?) = (ml)*) ~ L. (31)

The data displayed in Fig. 8 again confirm a power law with
an estimate for the exponent y/v=1.748+0.003.

Within the statistical error bars the measured exponents
agree with the Ising universality class, v=1, ,B:é, and y
=Z¢, as expected. The current analysis shows what accuracy
can be achieved when the critical behavior of coupled map
lattices is at stake. In particular, the accurate determination of
the critical coupling seems to be crucial as otherwise the
values of the exponents may be corrupted. In the present case
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FIG. 8. Top: Dependence of the first moment of m=3 ,0"/L? at
J.=0.234 13 on the system size L. The straight line shows a least
square fit with slope=-0.1245+0.0005. Bottom: Dependence of the
finite size susceptibility (31) at J.. on the system size L. The straight
line indicates a least square fit with slope 1.748+0.003.

the analysis of the Binder cumulant does not display a sys-
tematic drift of the intersections with the system size (cf. Fig.
6) as it was sometimes reported in the analysis of coupled
map lattices [22,30]. Error bars for v are apparently quite
large as this exponent was based on the derivative of a poly-
nomial fit. The other two ratios of exponents are more accu-
rate as they are directly evaluated from the scaling behavior
of appropriate moments. Overall, the results are far from
surprising since the underlying equilibrium Hamiltonian has
short range and predominantly ferromagnetic interactions.

VI. DISCUSSION

Piecewise linear coupled map lattices with a coupling me-
diated by the symbolic coordinate can be analyzed by ana-
lytical means. The dynamics can be described in terms of
probabilistic cellular automata if some Markov-like condi-
tions for the partition are satisfied. One may object against
such particular types of spatial couplings. First of all the
skew product structure between the coordinates and the sym-
bols is slightly artificial although it is the essential ingredient
for the analytical approach. Second, the usually employed
diffusive coupling is, in general, not covered by such a
scheme. One should, however, keep in mind that there is no
real justification for such a coupling although it is employed
in the vast majority of numerical approaches. Despite these
shortcomings one should mention that within the restricted
class of dynamical systems considered here one gets some
insight into the statistical properties of spatially extended
dynamical systems. In that respect such special coupled map
lattices may be of the same relevance like piecewise linear
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FIG. 9. Temporal evolution of the symbolic state of the Miller-Huse-like coupled map lattice (21) on a 200 X 200 lattice with periodic
boundary conditions at the critical coupling, Jy=1.25, J,,,=J.=0.234 13. Plots are shown at times (left to right and top to bottom) n=25, 50,
100, 200,..., 12 800, and 25 600. A random initial condition, i.e., the “high temperature” state, has been used.

Markov maps in the context of low-dimensional chaotic sys-
tems. Last but not least one should mention that the coupling
through the symbolic coordinate is able to cover the famous
diffusive coupling as well if piecewise linear dynamics on
repelling sets is considered.

Spatially one-dimensional coupled map lattices are able to
display phase transitions, i.e., qualitative changes of the dy-
namics which are entirely related to the limit of large system
size, since the symbolic dynamics yields spin models on
two-dimensional symbol lattices. However, if one requires
the dynamics to act on an attracting set then constraints are
imposed on the corresponding spin Hamiltonian which may
remove the possibility of phase transitions. Thus, coupled
map lattices on repelling sets allow for a larger variety. The
occurrence of phase transitions is more likely in such a setup
although such a behavior cannot be reproduced by straight-
forward numerical simulations. Furthermore, the occurrence
of the disorder condition for the symbolic dynamics of
d-dimensional coupled map lattices with attracting sets might
explain why such systems show critical behavior according
to a universality class of a d-dimensional spin system, like
the Miller-Huse model, despite a space time symbolic dy-
namics that yields a d+ 1-dimensional spin Hamiltonian.

Detailed balance is required as well to compute analytical
expressions for the invariant density and for the correlation
functions of coupled maps and of probabilistic cellular au-
tomata. Whenever the transition rates of the latter models are
products of quantities which involve only spins from a local
neighborhood then the condition of detailed balance neces-
sarily yields a stationary distribution which is generated by a
spin Hamiltonian with short range interactions. Thus, spatial
correlations decay exponentially when one-dimensional

models are considered and phase transitions are unlikely to
occur in such a setup. Detailed balance or the violation of
detailed balance seems to be a vital ingredient when phase
transitions in one-dimensional models are considered. Even
for local transition rates the corresponding stationary distri-
bution and the effective Hamiltonian may contain long range
interactions causing phase transitions when detailed balance
is violated.

Phase transitions for expanding map lattices and probabi-
listic cellular automata without absorbing states are of course
easily possible for spatially two-dimensional coupled sys-
tems. The Miller-Huse-like model introduced in Sec. IV con-
stitutes a simple example. Detailed balance is obeyed and a
Hamiltonian with short range predominately ferromagnetic
interaction results. General wisdom of the renormalization
group theory predicts critical behavior according to the Ising
universality class and such a behavior has been confirmed by
the computation of some critical exponents. Thus, contrary to
previous conjectures simultaneous updating is here not the
essential argument. Detailed balance plays the much more
important role. We have entirely focused on some static criti-
cal exponents. One may consider as well dynamical critical
features. I do not intend to discuss the corresponding scaling
behavior in detail but the temporal evolution of a disordered
initial state displays coarsening phenomena at the critical
point (cf. Fig. 9). Thus, the observations are in accordance
with Ising universality and detailed balance seems to be a
vital ingredient for such a behavior. One might expect that
minor violations of detailed balance do not change the uni-
versality class so that the features are somehow stable with
respect to variations of the model [31]. However, substantial
violations of detailed balance, as one might expect to occur
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FIG. 10. Labeling of the “central” lattice site (c) and its four
nearest neighbors (e), (n), (w), and (s). Diagrammatic view of the
two spin and four spin interactions appearing in the local energy
contribution (C2), apart from rotations.

for the original Miller-Huse model, may change the critical
behavior and may be responsible for the deviation from Ising
universality which has been reported previously [22]. Cer-
tainly, further investigations are needed and the analysis of
probabilistic cellular automata might be of help to solve such
a puzzle.

The numerical finite size scaling procedure which has
been performed in Sec. V produces, as expected, critical ex-
ponents in accordance with the Ising universality class. The
analysis gives a hint of which size of errors one has to expect
when critical behavior of coupled map lattices is analyzed by
such an approach. In particular, the accurate determination of
the critical point seems to be crucial as otherwise the numeri-
cal estimates for the critical exponents may be corrupted. Let
me mention that in the current case no systematic drift of the
Binder cumulant with the system size has occurred as it was
reported in some related investigations [22,30]. Whether
such a drift is related with the violation of detailed balance
cannot be solved at the current stage. Nevertheless, there
seems to be substantial unsolved problems in connection
with the statistical mechanics of coupled map lattices which
deserve to be discussed.

APPENDIX A: FROM COUPLED MAP LATTICES TO
PROBABILISTIC CELLULAR AUTOMATA

Let p,(x) denote the probability distribution to be in state
x at time n. The time dependence of such a distribution is
governed by the celebrated Frobenius-Perron equation (cf.
e.g., [32])

Pt (x) = f [T o™ = fly™; 7+ = sgn(y ™) 1} p, (y)dy
(A1)

when we consider the dynamics according to Eq. (1). To
simplify Eq. (A1) consider the hypercubes of the generating
partition, i.e., Uy=U0) X Uy X -+ X U, -1) and denote the
characteristic function of this cube by
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1 ifxeU,

A2
0 ifxe U, (a2)

Xo(X) =

By a straightforward calculation we will show that piecewise
constant densities, i.€.,

pa(x) = 2 X, (0)p, (1) (A3)

yield a solution of Eq. (Al). Namely we have

Pyt (X) = f H S = flyW; A7) = sgn(y ) 1}, (y)dy
= ET L 1:[ S = fyM; A 1dy p,(7)
= E E Xo®) J ) H A = f 3770 Jdy pi(7)

— fOW; 7 ) Jay® Pu(7)

x\W) EUU(»)

1
= E X« I1 Pl (A4)

T v Vg

Thus, piecewise constant densities are preserved when iter-
ating the dynamics according to Eq. (A1). The weights p,(7)
then obey the master equation (7) with transition rates given
by Eq. (8).

APPENDIX B: STATIONARY DENSITIES AND DETAILED
BALANCE

The stationary density of Eq. (7) is just determined by the
time-independent master equation which in view of the nor-
malization of the transition matrix can be written as

0= [WAa;Dp«(1) - WHT:0)p+(0)]. (B1)

Although the determination of the stationary density is usu-
ally a difficult task it becomes almost trivial when detailed
balance is satisfied, i.e., the individual terms of the sum in
Eq. (B1) vanish separately. Such probabilistic cellular au-
tomata are often referred as being reversible and numerous
investigations of such models can be found in the literature
(cf. e.g., [29,31,33]). When the transition probabilities are
written in terms of an effective field, like Eq. (8), then it is
quite well established that the condition of detailed balance,
i.e., the Kolmogorov criterion [34], requires the field to be
symmetric with respect to lattice inversion [15,26]. Such a
condition is not met by the model given in terms of W,. But
as we have seen in Sec. II the model is still easily solvable.
Actually, the model obeys a slight generalization of detailed
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balance as pointed out recently [27]. The condition of sta-
tionarity, Eq. (B1), can be ensured as well if the contribution
Wi(g;7)p«(7) is balanced by a term W(7;a)p«(g), which
does not necessarily involve the same spin state 7, as long as
the mapping 7— 7 introduced by this constraint is one-to-
one. Actually, for the model W, it is quite straightforward to

exp
Wda;1)

PHYSICAL REVIEW E 74, 046209 (2006)

establish such a mapping which depends on the spin state g.
If we choose
#V) — 7_(V—I)O.(v)o,(v+l) (B2)

then a simple calculation based on Egs. (8) and (9) yields

P + ur7D)) TT 2 cosh(ha™ + o)

exp E (o™ + ,ucr(” D) H 2 cosh(ho™ + ,LLO'(V+1))

= )7
Wi70) exp<2 FI o™ + W<V+1>)> TT2 cosh(A#") + pur*+D)
2 /L

= exp(E (o™ + ,u,g'(V+1))> H 2 cosh(A 7™ + ,UA'(V”))

exp(E (N + ,u(r“"”)) 112 cosh(ho™ + wo'vth) 112 cosh(Za™ + wo'vth)

14

where the transformation (B2) has been employed as well.
Thus, the stationary density obeys a slight generalization of
detailed balance

Wia;1)p«(7) = WAT;0)p=(a).

Probabilistic cellular automata of such a type have been
called “quasi-Hamiltonian automata” [15]. Similar consider-
ations are well known as well in the context of Fokker-
Planck equations [35] when one takes properties of the vari-
ables with respect to time reversal and the corresponding
reversible probability current into account. Thus, the model
defined by W, can still be considered to be a kind of revers-
ible probabilistic cellular automaton when trivial currents are
accounted for.

(B4)

APPENDIX C: INTERACTION POTENTIALS

The determination of the interaction terms of the Hamil-
tonian (27) in terms of pair and multispin interactions is a
standard procedure. Here we recall the essential steps on an
elementary level to keep the presentation self-contained.
Consider the contribution with index v to the sum in Eq.
(27). Denote the central spin at lattice site » by the label (c)
and its four nearest neighbors by (e) (east), (n) (north), (w)
(west), and (s) (south) (cf. Fig. 10). If 3=+ +g™
+0" denotes the total spin of the nearest neighbors then the
contribution to the Hamiltonian (27) reads

d9%) = ag+a,0"93 + a,3% + a3

(C1)

—In cosh(Jy + J,,,
+ a424,

where the right-hand side follows by series expansion taking

exp(E 2D (o™ + ,LLO'(V))> H 2 cosh(A 7" + ,LLT(VH)) - H 2 coshA 7" + ,u,r(””)) - pT

p«(o)
o B

into account that o'93 takes even integer values only,
U(C)E=O, +2,+4. If we evaluate the powers we obtain the
expansion

—1In cosh(Jy + J,,0'3) = by + b1 (0" + o + 0™ + o))
T by(0 W™ 4 M 1) 4 ) g)
+ 09GO 4 g 4 55 e)

+by O.(C)(O. g 9 4 o e) 5s)

WO 4 59 gle) O.(W))

) 6©) ) ),

+ b, (C2)

where the expansion coefficients b, still need to be expressed
in terms of the original parameters J, and J,,,. Nevertheless
the algebra shows so far that the Hamiltonian displays a
nearest neighbor pair interaction involving the central spin,
two next nearest neighbor pair interactions which do not in-
volve the central spin, and two types of four spin interactions
which do and do not involve the central spin, respectively
(cf. Fig. 10).

The evaluation of the interaction coefficients b; is now
completely straightforward. By considering o'“=+1 and
adding and subtracting the corresponding equations, the sys-
tem (C2) can be decoupled partially

— 3[In cosh(Jo + J,,,2) + In cosh(Jy = J,,3)]
= by + b0 + 0@ 4 GG 4 ) lE) 4 )0
+ O.(W)O.(e)) + b40(n)a.(e)U(W)a.(S)
- %[ln cosh(Jy+J,,2) —In cosh(Jy - J,,2)]
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= b,(0 + 0™ + 60 1+ ¢ 4 by( WM

+ oM GG 4 o9 E) g 00) 4 ) ) ) (C3)

Considering nearest neighbor spin configurations with =0,
2, 4 we obtain from Eq. (C3)

—In cosh ‘]0 = bo - 2b2 + b4

- %[ln cosh(Jy + 2J,,) + In cosh(J, — 2J,,,)]

= bo - b4
- %[ln cosh(Jy + 2J,,,) — In cosh(J, — 2J,,,,)]
— 3[In cosh(Jo + 4J,,,) + In cosh(Jo — 4J,,,)]

= bo + 6b2 + b4
- %[ln cosh(Jy +4J,,) — In cosh(J, — 4J,,,)]

= 4b, + 4b;. (C4)

Equation (C4) is now solved easily and the final result reads

by =—In cosh(J,) — %AZ(ZJ,M) - éA2(4J,m) = —In cosh(J),

bl == %Al(z']nn) - %Al(“"]nn) == % tanh(‘lo)‘]””’
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1 2

by=—1A5(4J,,) = - ———J* .
2 8 2( nn) COSh2(J0) nn

tanh(Jy)

by=3A,(2,,) - 1=A(4],,) = — ,
3 8 1( nn) 16 1( nn) COShz(JO) nn

2 sinh?(J,) — 1
cosh*(Jy) ™
(C5)

b4 == éA2(4Jnn) + %A2(2Jnn) =

where

A, (x) =1In cosh(Jy + x) — In cosh(J, — x),

Ay(x) = %[ln cosh(Jy + x) + In cosh(Jy — x) — 2 In cosh(Jy)],
(C6)

abbreviate discrete derivatives of first and second order. The
asymptotic expressions in Eq. (C5) state the leading order
with respect to the coupling constant J,,,.

In the limit J,> 1 all interactions but b; become exponen-
tially small and the Hamiltonian reduces to a nearest neigh-
bor coupled Ising model. The interactions are predominantly
ferromagnetic for J,,>0. In the case Jy,=0 the model re-
duces to the Hamiltonian already investigated in [26].
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